
AOC-Poset on discourse and argumentation
subgraphs: what can we learn on their

dependencies?

Laurine Huber1, Justine Reynaud1, Mathilde Dargnat2, and Yannick
Toussaint1

1 LORIA, Université de Lorraine
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Abstract. We aim at finding and understanding dependencies between
linguistic structures which differ in terms of constraints and expressive
power. It has been shown that studying dependencies between the argu-
mentation structure (ARG) and the Rhetorical Structure Theory (RST )
is non-trivial and requires a fine methodology. In this paper, we propose
to take advantage of the AOC-Poset structure to understand how the
subgraphs alignements occur in a small corpus annotated in ARG and
RST. We formalize the structures as graphs from which we extract both
subgraphs and subgraphs alignments, matching those subgraphs which
include the same text segments. Based on these extractions, we build a
formal context where the objects are the texts and the attributes are the
subgraphs and the subgraphs alignments. We show what we can learn
from the dependencies between the structures by mining the AOC-Poset
made of these attributes.
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1 Introduction

This paper experiments the use of AOC-Posets (also called Galois sub-hierarchies)
to observe and explain how subgraphs coming from two parallel graph-based
views of objects are aligned. Formal Concept Analysis and the partial order de-
fined on formal concepts provides a very powerful framework for a fine-grained
study of the relations between classes of objects. The experiment concerns a
corpus dually annotated as graphs following two distinct theories of discourse
and argumentation.

Several linguistic theories aim at annotating the discourse [4,13] or the argu-
mentation [12] structures from texts. Some of these structures may be formalized
as graphs where vertices are either segments of text or artificial nodes used for
structural aspects and directed edges correspond to discourse or argumentative
relations. Discovering how a graph built from one theory could be encoded by
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a graph built from another theory is a real challenge. This could help for com-
paring their expressive power, exploring their reasoning capabilities and using
discourse for predicting the argumentation structure.

In this paper, we build subgraphs alignments from graphs coming from anno-
tations made using two distinct theories.The first one, called Rhetorical Struc-
ture Theory3 [10] (RST ) , is used to annotate texts with semantic and pragmatic
relations between segments of text (called discourse units). The second one, Ar-
gumentation Theory [14] (ARG) is used to annotate texts with argumentative
relations between arguments, i.e segments of text that have an argumentative
function and which are either discourse units or concatenations of adjacent dis-
course units.

Our corpus of texts has two views that can be represented as ARG and RST
graphs, which are then decomposed into subgraphs. An alignment in a text is a
pair (SRST , SARG) of subgraphs, where the SRST subgraph of the RST graph
covers the same set of textual segment vertices as SARG, the subgraph of the
ARG graph. If these alignments are frequent in the corpus, i.e they occur in
more texts than a given threshold, it would highlight dependencies between the
theories. However, alignments are rare and we are interested in understanding
in depth which parts of the graphs are aligned, and what the ”elements” that
prohibits other alignments are. We rely on AOC-Posets, a conceptual structure
on object and attribute concepts that has the advantage of being smaller than the
full concept-lattice, but still allows one to study dependencies between attributes
in terms of subsumption, disjointedness or partial overlap between concepts.

In Section 2, we introduce the graphs built from the two theories and state
our problem. In Section 3, we motivate and contextualize our work. In Section 4,
we present our methodology and which relevant information on the alignments
can be mined from the AOC-poset. Then, we present some results on a small
corpus annotated with both ARG and RST and we conclude and present some
future research.

2 Problem statement

Our goal is to understand what leads to subgraph alignments in a set of texts
(objects) that have two distinct views as graphs, that we decompose into sub-
graphs (attributes). An alignment is a pair of subgraphs (one from the ARG
graph, the other one from the RST graph) that cover the same segments of text.
We take advantage of AOC-poset for finding dependencies, i.e highlighting align-
ments that frequently occur in the corpus, and for determining the situations in
which alignments occur or do not occur. This section presents the structures on
which we are working and states our problem.

3 Website of the RST: https://www.sfu.ca/rst/
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2.1 Textual structures

The corpus from which we extract graphs is made of 112 argumentative texts
written to answer a controversial question. For example, the text in Fig. 1 argues
about the question “Should we continue to separate our waste for recycling?”.
Each text has been analysed with two distinct goals: describing discourse and
argumentation structures. This led to two distinct annotations, both relying
on a single segmentation (in clauses or propositions) but using distinct sets of
relations (6 in ARGand 26 in RST ) and distinct constraints. As an example in
RST only adjacent segments may be related while there is not such constraint
in ARG. This leads to structural differences in the graphs coming from each
annotation and thus lack of isomorphism between them.

1. [It’s annoying and cumbersome to separate your rubbish properly all the time.]
2. [Three different bin bags stink away in the kitchen
3. and have to be sorted into different wheelie bins.]
4. [But still Germany produces way too much rubbish]
5. [and too many resources are lost
6. when what actually should be separated and recycled is burnt.]
7. [We Berliners should take the chance and become pioneers in waste separation!]

Fig. 1: Segmentation of the text micro b001: discourse segments are in line and
argumentative segments are in squared brackets.
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Fig. 2: RST (a) and ARG (b) graphs of the text in Fig. 1. Square nodes are
textual vertices, and black round nodes are structural vertices.

Rhetorical Structure Theory The graphs built in RST (see Fig. 2a) aim at de-
scribing the intention of the writer about a reader. The annotation using this
theory aims at relating adjacent segments of text through discourse relations –
represented by labeled directed edges – thus forming bigger segments that are
in turn linked to others. To do so, RST exploits two distinct types of relations.
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Mononuclear relations involve two segments. They are directed, indicating that a
segment (the source) is less important than the other (the target) (see segments
5 and 6 in Fig. 2a). Multinuclear relations link two or more segments of equal
importance. We introduce structural vertices to represent these multinuclear re-
lations in our graphs. They are distinguished from textual vertices that represent
segments of text. For example, in Fig. 2 vertices 2 and 3 are in a multinuclear
conj relation: they are thus related through the structural vertice to which they
are directed. Then, the structural vertice is directed to textual vertice 1 in a
mononuclear reason relation.

Argumentation Structure The graphs built in ARG (see Fig. 2b) aim at de-
scribing how segments are linked by argumentative relations in order to defend
a stance. The annotation procedure proposed by [12] uses 5 argumentative re-
lations that are represented as labeled directed edges. However, (1) segments
involved in argumentative relations (argumentative segments) may be bigger
than segments involved in RST relations and (2) ARG uses a specific relation
that targets a relation instead of a segment. To represent those specific cases,
we also use structural vertices. Segments 2 and 3 in Fig. 2b are an example of
(1). They converge toward a structural vertex that is the source of the support

relation. The structural node between segments 1 and 7 is an example of (2). It
indicates that the attack relation is targeted by another relation.

We thus formalize both ARG or RST structures as graphs:

Definition 1. A RST or ARG graph is a labeled directed graph G = (V,E).
V = Vt ∪Vs is the set of vertices where Vt are the textual vertices and Vs are the
structural vertices. E is the set of directed edges labeled by the relations coming
from the theories.

2.2 Finding and understanding alignments

We want to observe dependencies between (parts of) graphs coming from ARG
and RST views. To do so, we observe if alignments between subgraphs are fre-
quent in the sets of graphs, i.e if pairs of subgraphs that cover the same set of
textual vertices are occurring frequently in the sets of graphs. For example, in
Fig. 1 subgraphs SA and SR cover the same textual vertices set {1, 2, 3} and
thus are aligned. If this alignment was frequent in the corpus, we would be able
to interpret it as a dependency between SA and SR and further as a dependency
between parts of the theories. However, due to the diversity in the annotations
and the constraints imposed by the theories, these strict dependencies doesn’t
occur. We are thus interested in dependencies of other types, for example, (1) if
S1A is aligned to S1R in some texts but to S2R in some others, or (2) if S1A is
aligned to S1R in some texts, to S2R in some others, but S1R is aligned to S1A
in some texts and to S2A in some others.
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3 Motivations and related work

Accuosto et al. [1] annotated texts by argumentation structures and used transfer
learning for building a model that leverages with features learned from discourse
parsing. Compared to models which do not use discourse, results got improved.
This led to the idea that discourse structure could help in the task of argumen-
tation mining. To better understand in what ways, it is interesting to clearly
establish if discourse and argumentation structures share similarities.

In [11], the authors proposed a corpus where texts are annotated in both
argumentation and discourse, in order to study their dependencies. They rep-
resented both annotations as (ARG and RST ) graphs and did a first empirical
study of the overlapping relations between graphs from each theory.

However, two graphs built on one text are usually not isomorphic and the
sets of relations used to label the edges are different in size (6 in ARG and 26
in RST ). It could thus be interesting to go deeper in the analysis by considering
alignments occurring at subgraph level.

For a more systematic comparison and for considering subgraph alignments
instead of individual edge alignments, authors in [8] extracted all subgraphs
from ARG and RST views and used Redescription Mining [5] for aligning them.
Despite promising results, several improvements can be done. The algorithm for
extracting redescriptions relies on statistical heuristics that degrade results when
working with a small dataset like the one they used (only 112 objects). Also,
their approach extracted subgraphs from each view but it did not consider if
subgraphs covered the same textual vertices. This led to subgraphs that were
considered aligned when they were actually not to be aligned.

Formal Concept Analysis (FCA) [6] provides a powerful framework for study-
ing how objects are grouped according to the attributes they have in common.
It is thus relevant to use it to understand dependencies between attributes.

We build AOC-Posets which is most of the time much smaller in size than
the full lattice. More precisely, it contains at most |A|+ |O| concepts, while the
complete lattice may have up to 2min(|A|,|O|). AOC-Posets has been used as a
tool for different tasks. For example, [2] proposed an exploratory search applied
to the field of software product engineering, based on local generation of AOC-
Posets. This approach is close to ours as they are trying to find similar behaviors
from software bricks.

4 Methods

Our methodology aims, in three steps, at representing the corpus as a formal
context (see Fig. 3). We proceed at two different levels. First, at the text level,
we extract all subgraphs and we build a pair of subgraphs if two subgraphs are
aligned in the text, i.e. if they cover the same textual vertices. Then, we study
the occurrences of alignments at the corpus level. We compare subgraphs and
subgraphs alignments between texts: two subgraphs coming from two different
texts are identical as long as their structure is identical, regardless of the label
of the vertices.
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Fig. 3: Overview of the methodology.

4.1 Extracting subgraphs

We introduce two constraints for the extraction of subgraphs to make sure that
they involve at least two textual vertices and that they are always weakly con-
nected subgraphs. We call them valid subgraphs. For example in Fig. 2a, the
ARG subgraph which covers vertices {1, 2, 3} is valid while the one covering
vertices {1, 2, 3, 4} is not.

Definition 2. A subgraph S = (Vt ∪ Vs, Es) is valid iff S is weakly connected
and if |Vt| >= 2.

For each text ti ∈ T we extract all valid subgraphs of ARG i and RST i. We
obtain 2 sets of subgraphs. In the second table of Fig. 3, triangles represent valid
subgraphs and numbers inside represent the nodes covered by it.

ARGsubs = {Ax | Ax is a valid subgraph of an RST graph} (1)

RSTsubs = {Ry | Ry is a valid subgraph of an ARG graph} (2)

Subgraphs that have an identical structure, ie that are similar subgraphs
regardless of the vertices labels, have a similar label Ax or Ry assigned. For ex-
ample in the second table of Fig. 3, the two yellow triangles represent subgraphs
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that have an identical structure, even if they cover different sets of vertices. The
label A2 is thus assigned to each subgraph. These labeling of subgraphs serves
as the basis for constructing the set of attributes.

4.2 Defining attributes of the context

From the sets of subgraphs obtained, we extract pairs of subgraphs (Ax, Ry)
that are aligned in a text, i.e that cover same textual vertices. For example, in
Fig. 2a, the ARG and RST subgraphs which covers the textual vertices {7, 4, 6}
are aligned because they both cover the same vertices.

Definition 3. Given S1 = (Vt1 ∪ Vs1, E1) a subgraph of ARGsubs and S2 =
(Vt2 ∪ Vs2, E2) a subgraph of RSTsubs, S1 and S2 are aligned in a text t iff
Vt1 = Vt2.

On ARGsubs × RSTsubs, we define the subset of subgraphs that are aligned
as follows:

AR = {(Ax, Ry) ⊆ ARGsubs ×RSTsubs | ∃t ∈ T,Ax and Ry are aligned in t}
(3)

and the set of graphs singleton that are aligned as:

A = {Ax ∈ ARGsubs|∃Ry ∈ RSTsubs, (Ax, Ry) ∈ AR} (4)

R = {Ry ∈ RSTsubs|∃Ax ∈ ARGsubs, (Ax, Ry) ∈ AR} (5)

Thus, a given text t may contain as an attribute a singleton Ax, and a
singleton Ry. If the two subgraphs are aligned, it will also have the attribute
(Ax, Ry). For example in Fig. 3, A2 is aligned with R2 in t1 because they both
cover vertices 2,3, a pair (A2, R2) is thus introduced as an attribute for t1. In
t112 however, A2 is aligned with R4 and the attribute (A2, R4) is thus introduced
for this text.

4.3 Creating the context

We determine a formal context K, on the basis of the attributes extracted and
built from the graphs. K := (G,M,I) where G = T is the set of objets (the texts)
and M = {A ∪ R ∪ AR} is the set of attributes (the singleton subgraphs and
the aligned pairs) and (g,m) ∈ I means that a text (an object) g ∈ G has a
subgraph and/or a subgraph alignment.

4.4 Taking advantage of AOC-Poset

Explaining alignments among two sets of graphs can be seen as the problem
of finding subgraphs that co-occur in a set of objects described by them. For-
mal Concept Analysis (FCA)[6] is a relevant method to do that. FCA uses two
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derivation operators (.)′ : 2G 7→ 2M and (.)′ : 2M 7→ 2G to build a set of formal
concepts from a context. They are defined as G′ = {m ∈M |∀g ∈ G, (g,m) ∈ I}
and M ′ = {g ∈ G|∀m ∈ M, (g,m) ∈ I}. Thus, a formal concept (A,B) exists
if and only if A ⊆ G, B ⊆ M , A′ = B, and A = B′. A is called its extent
and B is called its intent. The set of all concepts together with the extent set-
inclusion order form the concept lattice of the formal context. For two concepts
C1 = (A1, B1) and C2 = (A2, B2), C1 is said to be smaller than C2 if A1 ⊂ A2

and we write C1 < C2.

The AOC-Poset structure relies on the partial order on the concepts intro-
ducing at least an object (object concept) or an attribute (attribute concept). A
concept C introduces an object x (resp. attribute y) when x is in the extent of
C but not in any concept C ′ < C (resp. C ′ > C). While the full concept lattice
build from K contains 2120 concepts, the AOC-Poset contains only 379 and can
thus be used as a smaller alternative. We used the Hermes algorithm [3] to build
the AOC-Poset from K.

The order defined over the concepts of the AOC-Poset may help to observe
in which way aligned attributes occur in the corpus. Fig. 4 shows some simplified
possible cases (in reduced notation) that we may observe: a node represents a
concept and its label gives its local intent.

{A,R}

{(A,R)}

(a)

{A,R, (A,R)}

(b)

{A} {R}

{(A,R)}

(c)

{A}

{R}

{(A,R)}

(d)

{A}

{R}

{(A,R)}

(e)

{A}

{R, (A,R)}

(f)

{R}

{A, (A,R)}

(g)

Fig. 4: Substructure of the AOC-Poset: concepts are rectangles labeled by their
local intents.

Case 4a in Fig. 4 illustrates that A and R subgraphs may be used in the same
texts without being necessarily aligned, contrary to case 4b, where subgraphs are
always aligned when they are both used in the same texts. In 4c, the concepts
introducing the singletons forming the alignments are incomparable, meaning
that there exist some objects having only one of the singletons. Cases 4d (resp.
4e) correspond to cases where, in the texts having an A (resp. R) subgraph,
some have also the R (resp. A) subgraph and a subset has both of them aligned.
Cases 4f (resp. 4g) illustrates when an A schema is always aligned with an R
schema (and thus can be interpreted as one theory that depends on another),
and it can be seen as a specialization of the case 4e.
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5 Results

5.1 Description of the dataset

The corpus on which we built the formal context is made of 112 texts that we
represented with both ARG and RST graphs having on average 6 textual vertices
(min 3, max 13). After building the context with the methodology explained in
the previous section, we got 2189 attributes in total, 1278 were singletons that
could be aligned and 911 were pairs of aligned subgraphs. These pairs are built
from 534 ARG subgraphs and 744 RST subgraphs. Among them, only 74 have a
support greater than 1. The others correspond to the attributes that are specific
to a text. We ignore them for simplicity.

x
#ARG subgraphs aligned

with x RST subgraphs
#RST subgraphs aligned
with x ARG subgraphs

1 407 665
2 57 43
3 28 12
4 10 10
5 11 5
6 3 5
7 4 3
8 1 1
9 2 0
10 3 0
11 0 0

Table 1: Distribution of the # of alignements for each theory

Based on the definitions of the structures and especially the fact that RST
uses a set of 26 distinct relations compared to 6 in ARG, it is likely that a unique
ARG subgraph may be frequently aligned with several distinct RST subgraphs.
However, proportions of ARG and RST alignments roughly followed the same
distributions as we can see in Table. 1.

Structure in the AOC-poset Number
(see Fig. 4) support > 1 support > 0

a 0 0
b 0 311
c 67 281
d 0 0
e 0 2
f 2 275
g 5 42

Tot 74 911

Table 2: Structures of the attributes in the AOC-poset for pairs of subgraphs.
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5.2 The structure of the alignments in the AOC-Poset

We classified each pair of subgraphs from the attributes set into the classes
described in Fig. 4. Table 2 gives the number of attributes for each substructure
in the AOC-Poset. We discuss here information learned from the structure of
the AOC-Poset on alignments that have a support greater than 1.

Two subgraphs alignments (with a support > 1) correspond to the substruc-
ture 4f. Both are in fact introduced in the same concept (c3) (see Fig. 5) meaning
that they occur exactly in the same texts. Concepts introducing a1 (c1) and a4
(c2) form a chain together with c3 while attributes r128 and r132 are introduced
in c1. a1 is a subgraph of a4, however a1 and a4 are introduced in different con-
cepts, meaning that a1 may be used in a different “environment” than the one of
a4. r128 is a subgraph of r132, and they are introduced in the same concept so
that all texts containing r128 also contains r132, meaning that the first is never
used in another context than the latter. This observation is relevant according
to the theories because the multinuclear list relation is always used to link at
least two textual vertices.
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2

supp

a1

1

2

3

supp supp

a4

1

2

2

list

evi

r128

1

2

2

3
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r132

a1

a4

r128, r132,
(a4, r132),
(a1, r128)

Concept C1

Concept C2

Concept C3

Fig. 5: Subgraphs on the left and their corresponding AOC-Poset substructure
on the right.

Four of the five alignments classified as 4e are in fact introduced in the same
concept which is also a concept introducing two texts. This attribute-object-
concept highlights two texts that were annotated by the exact same structures
in both ARG and RST. The five pairs are introduced in the concept as well
as their ARG singletons. However, all RST attributes are introduced in greater
concepts, meaning a dependency of ARG with RST but not of RST with ARG.
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The substructures classified as 4c are the most frequently observed. Unfortu-
nately, they correspond to cases where we cannot conclude to a unique relation
between an ARG subgraph and a RST subgraph. Indeed, most of the time, both
subgraphs are implied in more than one alignment, thus implying to study big-
ger substructure of the AOC-poset, as shown in Figure 6, to make conclusions.
These more complex cases are not discussed here due to lack of space.

{R2} {A1} {R1} {A2}

{(A1, R2)} {(A1, R1)} {(A2, R1)}

Fig. 6: AOC-Poset Substructure: rectangles show concepts with their local in-
tents.

6 Conclusion and future work

We proposed to approach the problem of finding and understanding alignments
in a corpus of texts annotated following two distinct theories. The corpus used
and the constraints coming from both theories led to a strong variability in terms
of possible alignments between subgraphs. We proposed to represent the corpus
as a binary context relating texts with subgraphs or pairs of subgraphs. We used
AOC-Poset to highlight specificities in the annotations or generalities that can
be used to draw conclusions about the dependencies between the two formalisms.

This work served as a first study on this problem and opens up different
possibilities for future work. We found characteristics on the corpus by semi-
automatically searching for specific structures on the concepts of the AOC-Poset.
This process could be later fully automated allowing a complete understanding
of the alignments occurring in the corpus. Some extension of FCA could also be
used for this problem. In particular, RCA [9] which allows to consider several
types of objects that have their own description and relations with other objects.
Instead of considering alignments as pairs of subgraphs that form a specific
attribute, we could use RCA to consider alignments as relations between sets
of ARG and RST subgraphs. The set of texts would be related to ARG and
RST sets with another relation, meaning that a text contains a subgraph. The
iterative process allows to integrate relational knowledge in the concept lattices,
and would thus highlight new knowledge such as “texts that have ARG subgraphs
a1, a2 also have RST subgraphs r4, r5, and a1 and r4 are aligned.” . It could
be interesting to compare this approach with ours, both in terms of complexity
and knowledge learned.

Pattern Structures [7] could also be useful as it allows to consider structured
data, but for now it provides less tools, in particular for visualization.
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